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Abstract

We present in this work the application of a set
of different evolutionary methodologies in the prob-
lem of electronic filier design. The main objectives
are to find out which consirainis in the filter topolo-
gies, if any, must be observed along the evolutionary
process and to study the problem of convergence to
parsimonious circuits. The new area of Evolutionary
Electronics is introduced, an evolutionary methodol-
ogy based on wariable length representation is pre-
sented and the results on the evolution of low-pass
and band-pass filters are described.

1. Introduction

This work focuses on the application of evolution-
ary systems [4] in engineering design. Particularly,
the application of evolutionary techniques in the area
of electronic design and optimisation gave birth to a
new and promising area of research, Evolutionary
Electronics[13][6]. The aim of this area is the cre-
ation of new automation design techniques for elec-
tronic circuits, based on the Darwinian concepts of
natural selection, recombination and mutation. We
present and apply in this work evolutionary method-
ologies based on fixed and variable length genotypes
in the problem of passive analog filter design.

This work is divided into six sections; section 2
introduces the basic concepts of Evolutionary Elec-
tronics; section 3 presents some previous works in the
area of passive analog filter design; section 4 presents
our evolutionary methodologies; section 5 describes
a series of experiments made by the authors in elec-
tronic filters design; we compare the results for dif-
ferent filter specifications (low-pass and band-pass)
and also for different evolutionary frameworks, i.e.,
using fixed or variable length representations. Sec-
tion 6 concludes this work.
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2. Evolutionary Electronics

Evolutionary Electronics extends the concepts of
Genetic Algorithms to the evolution of electronic
circuits. The main idea behind Evolutionary Elec-
tronics is that each possible electronic circuit can be
represented as an individual or a chromosome of an
evolutionary process, which performs standard ge-
netic operations over the circuits, such as selection,
crossover and mutation [13]. We may visualise the
task of Evolutionary Electronics as the one of sam-
pling a search space S consisting of electronic circuits
[3]. The sampled search space S has the following
main features:

1. It is usually very large and formed by circuits
of different sizes and topologies;

2. It can be visualised as formed of two sub-
spaces [3]: the sub-space of the compliant circuits,
Sc, and the sub-space of the non-compliant cir-
cuits, Sp,..

The main idea expressed by the last feature is that,
given a system specification or target, the search
space will be usually formed by circuits that satisfy
the user specifications, contained in S,, and circuits
that do not satisfy the required specifications, con-
tained in S,.. The Artificial Evolutionary System
should converge to a solution in S,. Nevertheless,
engineers are not interested in any solution of S, but
only in those solutions which are optimal or quasi-
optimal in terms of one or more specific criteria, such
as the number of circuit components, area, speed
or its power consumption. Therefore, the Artificial
Evolutionary System must converge to a design con-~
tained in the restricted subspace of the engineering
solutions, S,, where S, C S,. This can be viewed in
Figure 1, which shows an example of the mapping
between the fitness landscape and the Evolutionary
Electronics search space subsets, as well as an exam-
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Figure 1 - Evolutionary Electronics Genome Space

ple of the genotype - phenotype mapping in Evolu-
tionary Electronics; in this figure, A € S;, B € Sy
and C € S, (shaded area). The individual C, with
the highest fitness, suits as an engineering solution.

Due to the broad scope of the area, researchers
have been focusing on different problems, such as
placement and routing, evolution of digital circuits
based on Boolean gates [12], evolution of sequential
circuits [5][12], evolution of passive and active ana-
log circuits [9][7] [2], evolution of operational ampli-
fiers [11][1] and transistor size optimisation. Of great
relevance are the works focusing on intrinsic hard-
ware evolution [13], in which evolution is performed
in the own silicon, exploring, therefore, all the phys-
ical properties of the medium. This particular area
is called Evolvable Hardware [5].

3. Previous Works

We are particularly addressing the case of evolv-
ing analog circuits based on resistors, capacitors and
inductors. This task has already been tackled from
different evolutionary perspectives by other authors
recently.

J.B. Grimbleby, from the University of Reading
[2], has applied Evolutionary Algorithms (EAs) to
synthesise filters for particular frequency and time
domain specifications. In his approach, the EAs
are used to find the network topology; the compo-
nent values are determined by numerical optimisa-
tion, without evolution. He has used fixed length
string structures and integer number chromosome
representation.

In another application, Horrocks and Spittle,
from the University of Wales [7], have used Genetic
Algorithms to deal with the problem of preferred val-
ues electric components selection, particularly resis-
tors and capacitors, to implement active filters. In
[8], Horrocks and Khalifa extend this study, taking
into account parasitic effects in resistors, inductors
and capacitors. They evolved a low pass filter with 9
components encoded in 9 genes through binary rep-
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resentation. Though, they have not addressed the
case of searching for new topologies.

Using a different evolutionary methodology, Koza
et. al. have made a large number of works apply-
ing the Genetic Programming (GP) methodology in
electronic circuit synthesis. In[9][10]{1], they have
applied Genetic Programming and the Circuit Con-
structing Tree methodologies[9] to the evolution of a
Crossover Filter, evolution of a Brick-Wall Low Pass
Filter, evolution of an Asymmetric Bandpass Filter
and evolution of an operational amplifier. Both the
filter topologies and the component values have been
evolved and the SPICE simulator has been used to
evaluate the circuits.

4. Evolutionary Methodologies

Based on these previous works and on the main
features needed for analog design automation tools,
we devised three main issues:

1. Evolution of the circuit topologies;

2. Evolution of the components nature and val-
ues;

3. The need to seek for parsimonious solutions.

The first issue is examined by comparing two
experiments (see next section): one in which the
topologies sampled by the Evolutionary Algorithm
(EA) are constrained to be arranged into parallel
meshes and another in which this constraint is re-
moved and the EAs are able to make any component
arrangement.

The second issue raised is examined by allowing
the EA to choose the nature and the value of the
components; however, in order to make this applica-
tion as near as possible to the real electronics world,
we restrict resistor, capacitors and inductors to take
only the so-called preferred values [7], that are more
commonly manufactured.

The third issue is of major importance for our
work, since it is directly related to our evolutionary
methodology. If we are to use genotypes represented
by strings of fixed length to this problem, we have
to guess, possibly using our previous knowledge, the
number of components that are necessary to satisfy
a particular filter design specification. Furthermore,
penalties will have to be applied in the fitness func-
tion for large circuits, if parsimony is also an impor-
tant objective. On the other hand, when using GP,
care should be taken to control the depth size of the
trees.

In order to overcome the problems described
above, we decided to use an EA in which circuits are
represented by strings that are allowed to grow along
the evolutionary process. We call it the Increasing




Length Genotypes Approach, which is based on the
ideas of the Species Adaptation Genetic Algorithm
(SAGA) [4]; all electronic circuits of the initial popu-
lation will have a small number of components, which
increases gradually along the evolutionary process.
Therefore, the EA starts sampling subspaces of par-
simonious solutions, going toward subspaces of more
complex solutions as long as design requirements are
not satisfied. The selection pressure provides a way
to stop the growing process when circuits close to the
specification are found, although care must be taken
with local optima.

Therefore, in addition to crossover and mutation,
we have also used the Increasing Length Operator,
which increases, with a low probability [4], the length
of each genotype by one gene; each new gene created
by this operator is randomly initialised. Particularly,
our crossover operator did not require maximisation
of similarity between genotype segments, which is a
concept used in the SAGA framework. The muta-
tion operator actuates over integer values by chang-
ing them, with equal probability, to any other value
within the alphabet used. Tests have been made with
both fixed and adaptive mutation rates. In the lat-
ter, the mutation rate increases as the average geno-
type length grows.

5. Case Studies

We have devised three sets of tests to evaluate
different evolutionary methodologies:

1. Variable length representation EAs, con-
straining the topologies of the filters to meshes;

2. Fixed length representation EAs, making no
constraints to the filter topologies;

3. Variable length representation EAs, making
no constraints to the filter topologies.

In order to evaluate the above evolutionary
methodologies, we have used two test cases, a low-
pass and a band-pass filter, with the following fre-
quency requirements:

1. Low-pass filter with passing band up to 1000
Hz and stop band above 2000 Hz [10];

2. Band-pass filter with passing band between
2000 Hz and 3000 Hz and stop band below 1000
Hz and above 4000 Hz.

Based on Koza’s previous works [9][10], we have
devised the following fitness evaluation function:

n
fitness = Z w;|Target; — Output;| (1)

i=1

According to equation 1, the fitness is the
weighted sum of the deviations between the fre-
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quency response specification, Target; and the fre-
quency response obtained Quiput;. The frequency
axis is uniformly sampled over the band of interest,
usually ranging from 0 to 10 kHz. The weight w;
takes a maximum value for frequency points inside
the passband, an intermediate value for frequency
points inside the stop band and a minimum value
for other frequency points. We set w; equal to 20, 10
and 1 for these three cases respectively. Since we are
using the roulette well selection method, the value
given by equation 1 had to be inverted. Although
this fitness equation worked well, setting the values
of the weights has been an interactive and time con-
suming process.

In order to evaluate the circuits, we have used,
according to the case, a hand written simulator, the
SMASH simulator, from Dolphin corporation, and
the SPICE simulator.

5.1 First Test Set

In the first set we constrained the circuit topolo-
gles to be made up of parallel meshes, each one hav-
ing two components. Each gene will encode a mesh
of the circuit, defining the nature of the two com-
ponents and their values (chosen from the preferred
manufactured values). Therefore, each time a geno-
type is increased by one (random) gene, one mesh is
added to the circuit. The initial population consists
of circuits of only one or two meshes and may grow
until five meshes. Figures 2 and 3 show the evolved
circuits for the low-pass and band-pass specifications
respectively and Figures 4 and 5 show their respec-
tive frequency responses (output voltage in decibels
versus frequency in Hertz).

We have used a population of 50 individuals, run-
ning along 500 generations, crossover rate of 0.7,
adaptive mutation rate, and increasing length oper-
ator rate of 0.05. Fitness proportional selection and
one-point crossover have been used. Each genotype
is formed of up to 30 positions (5 genes made up of
6 loci). An integer number representation has been
used [2] and, according to this representation, each
gene may represent a total of 82,944 meshes (differ-
ent combinations of capacitors, resistors and induc-
tors of different values). A hand-written circuit sim-
ulator based on the Laplace analysis has been used.

5.2 Second Test Set

In the second test set we have used fixed length
representation, though allowing any kind of connec-
tions among the components. Each gene in the geno-
type now describes a single component, by determin-
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Figure 2 - Evolved Low Pass Filter (First Set)
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Figure 3 - Evolved Band Pass Filter (First Set)

ing its nature (resistor, capacitor or inductor), value
(from the manufactured preferred values) and con-
nections points. We established that all genotypes
would be made up of 10 genes, i. e., each circuit
with 10 components. The SMASH simulator has
been used to evaluate the circuits, in the AC analysis
mode. As any kind of arrangement among the com-
ponents is now possible, many topologies are now
not simulatable, receiving a negative fitness value of
-1000 [10].

We have used an Evolutionary Algorithm with 40
individuals, running over 200 generations, crossover
rate of 0.7, mutation rate of 0.02 per genotype posi-
tion, linear rank selection with truncation, and uni-
form crossover. Each genotype is formed by 50 posi-
tions (10 genes made up of 5 loci). An integer num-
ber representation has been used and, according to
this representation, each gene may represent a total
of 14,112 components (different values of capacitors,
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Figure 7 - Evolved Band Pass Filter (Second Set)

resistors and inductors).

Figures 6 and 7 show the evolved circuits for the
low-pass and band-pass specifications respectively
and Figures 8 and 9 show their respective frequency
responses. These circuits have also been simulated
in SPICE, showing the same results. Note that the
low-pass filter has only 9 components, because one
component was found to have no effect in the circuit
behaviour.

5.3 Third Test Set

In the third test set we have allowed any topol-
ogy arrangement between components, using a vari-
able size representation. Each gene represents a par-
ticular component, in the way described in the last
section. We initialised all the individuals in the pop-
ulation with five random genes and applied an es-
pecial operator to increase the genotypes along the
evolutionary process. Opposing to the first set of ex-
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Figure 9 - Frequency Response for the Circuit of Fig.
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Figure 11 - Evoived Band Pass Filter (Third Set)

periments, in which the unit of increase was a mesh
made up of two components, in this case the unit of
increase was one component. The SMASH simula-
tor has been used to evaluate the circuits in the AC
analysis mode.

We have used a population of 40 individuals, run-
ning along 300 generations, crossover rate of 0.7, mu-
tation rate of 0.02 per genotype position and increas-
ing length operator rate of 0.1, Linear rank selection
with truncation, uniform crossover and integer num-
ber representation have been used. The genotypes
are initialised with five genes, each gene being made
up of 5 positions and being able to express a total of
14,112 components. They are allowed to grow up to
a total of 15 genes.

Figures 10 and 11 show the evolved circuits for
the low-pass and band-pass specifications respec-
tively and Figures 12 and 13 show their respective
frequency responses. These circuits have also been
simulated in SPICE, showing the same results.

Figures 14 and 15 show the average genotype
lengths, in terms of number of electric components,
of the population along the evolutionary process for
particular runs on the low-pass and band-pass cases
respectively. It can be seen from the figures that
there is a tendency for the genotypes to grow along
the evolutionary process, due to the application of
the Increasing Length Operator. Although the In-
creasing Length operator is applied at a constant
rate along the evolutionary process, we can verify
from the figures that there are periods in which the
average length of the genotypes stays stable. In these
periods, the EA is failing to find fitter solutions in
less parsimonious subspaces; so, selection pressure
keeps the average length of the population constant.
This fact suggests that our approach is capable of
finding more parsimonious solutions.
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Figure 12 - Frequency Response for the Circuit of Fig. 10
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Figure 13 - Frequency Response for the Circuit of Fig. 11
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5.4 Summary of the Results

For the sake of comparison, Tables 1 and II
summarise the results obtained over the experiments
performed. In these tables, NC is the number of
components of the best solution and A(1K), A(2K),
A(3K) and A(4K) are the response of the circuits,
in dB, for the frequencies of interest, i. e., 1 kHz,
2 kHz, 3 kHz and 4 kHz. For the low pass filter,
good designs should have high A(1K) values and low
A(2K) values; for the band-pass filter, good designs
should have high A(2K) and A(3K) values and low
A(1K) and A(4K) values. The lines labelled 1, 2
and 3 accounts for the first, second and third set of
experiments respectively. It can be seen from these
tables that, whereas the three approaches perform
similarly in both cases, the first approach arrived at
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Figure 14 - Average genotypes length (lowpass filter)
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TABLE I
SuMMARY ON Low-Pass FILTER EVOLUTION

- NC [ A(K) [ AQK)

18 [[-01 [ -16.1

29 |23 | 203

311 |[-16 | -248

TABLE 11

SUMMARY ON BAND-PAsS FILTER EVOLUTION
“TTNC [ A(IK) || ACK) || AGK) || A(4K)
110 || -223 || 7.7 498 || -194
210 |[-222 |15 5.9 || 24.5
31T |[-233 | 0.2 37 || -17.8

a smaller circuit in the first case.

Comparing the performance of this evolutionary
methodology with the genetic programming method-
ology in the evolution of the low-pass filter [10],
it has been verified that this methodology arrived
at circuits with similar frequency responses, though
processing fewer individuals than in the genetic pro-
gramming methodology.

In terms of time considerations, the first set of ex-
periments are also faster, because we could write a
simulator in C to evaluate the circuits, since they are
made up of simple meshes. For the sake of compar-
ison, the written simulator based on Laplace analy-
sis takes around 1 second to evaluate a circuit, while
standard simulators used in the second and third sets
take around 3 seconds to do the same.

Even though the solutions obtained in the three
sets of experiments are satisfactory in terms of per-
formance, a problem remains to be addressed: the
circuits obtained in all the tests have presented large
inductor values, which may turn difficult the use
of these circuits in real electronic applications. Al-
though the first methodology has outperformed the
other ones when time is taken into account, the is-
sue of component size minimisation may change the
sitnation. When tuning the fitness evaluation func-
tion to search also for small sized components, it is
likely that the new topologies, potentially found in
the second and third sets, may be more successful.

6. Conclusions

Different evolutionary approaches have been ap-
plied to the problem of passive electronic filter de-
sign. The issues of variable and fixed EA representa-
tion and of imposing constraints in the circuit topolo-
gies have been investigated. We are now studying the
problem of evolution of topologies with small sized
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components, in order to make this tool suitable to
be applied in integrated circuits design.
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